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Temperature-dependent structural behavior of self-avoiding walks on Sierpinski carpets
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We study the temperature-dependent structural behavior of self-avoiding walks (SAWs) on two-dimensional
Sierpinski carpets as a simple model of polymers adsorbed on a disordered surface. Thereby, the Sierpinski
carpet defines two types of sites with energy 0 and >0, respectively, yielding a deterministic fractal energy
landscape. In the limiting cases of temperature 7— 0 and 7— o, the known behaviors of SAWs on Sierpinski
carpets and on regular square lattices, respectively, are recovered. For finite temperatures, the structural be-
havior is found to be intermediate between the two limiting cases; the characteristic exponents, however,

display a nontrivial dependence on temperature.
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I. INTRODUCTION

The adsorption of polymers on surfaces is important from
both a technological and a fundamental point of view. The
structural behavior of adsorbed polymers is determined by
the interaction with the (usually disordered) surface as well
as by intra- and interpolymer interactions. Concerning the
latter issue, it is known that linear polymers made of similar
monomer units in a good solvent can be accurately modeled
by a self-avoiding walk (SAW). A good solvent is a liquid
that is able to screen all long-range forces, such that only the
short-range (repulsive) interactions remain. Disordered sur-
faces, on the other hand, are commonly modeled by fractal
structures, either deterministic or random ones. Conse-
quently, SAWs in two-dimensional fractals are a well-studied
system for polymers adsorbed on surfaces [1,2].

However, despite an intense investigation of the behavior
of SAWs in fractals, many theoretically challenging issues
remain to be understood. In this paper, we focus our attention
on the structural behavior of SAWs in a specific two-
dimensional deterministic fractal of infinite ramification, the
Sierpinski carpet (see Fig. 1 for a Sierpinski carpet of the
second generation). Here, “infinite ramification” refers to the
fact that an infinite number of cut operations is required to
disconnect any given subset of the structure [3,4]. The be-
havior of SAWs in these fractal structures has turned out to
be quite challenging to understand [5-9]. This is mainly due
to the fact that, for infinitely ramified fractal structures, no
renormalization group technique is known, in contrast to the
case for Sierpinski fractals of finite ramification [10,11]. In
fact, a naive generalization of the results known for regular
lattices (for which renormalization group techniques are
available) yields incorrect estimates, for instance concerning
the so-called des Cloizeaux relation [12], which has been
shown not to hold for Sierpinski carpets [8,9].

To shed some light on this intriguing model, we study
SAWSs on Sierpinski carpets in the presence of a finite tem-
perature 7. Thereby, the Sierpinski carpet defines sites with
energy O (the formerly allowed sites) and €>0 (the formerly
forbidden sites), yielding a deterministic fractal energy land-
scape (a related model, in which the forbidden sites remain
forbidden but the boundaries between allowed and forbidden

1539-3755/2007/76(6)/061101(5)

061101-1

PACS number(s): 05.40.—a, 61.41.+e, 61.43.—]

sites become attractive, has been studied previously [13]). In
the limiting cases of temperature 7—0 and 7—, the
known behaviors of SAWs on Sierpinski carpets and on
regular square lattices, respectively, are recovered. In this
energy landscape, the SAW configurations are generated via
the reptation algorithm [14,15], with the modification of a
finite acceptance probability min{1,exp(—~AE/T)} where AE
is the energy difference between the attempted and the cur-
rent configurations. Hence, the reptation algorithm is used
here as an importance sampling method which by construc-
tion samples mainly the regions in configuration space (that
of all possible chain configurations with one chain end lo-
cated on all available lattice sites) that have large Boltzmann
weights and contribute significantly to the observables. The
reptation algorithm seems particularly suitable for the
present problem, although it is not exact, and allows us to
study quite long chains (up to N=399, limited by the size of
the fractal lattice that can be generated). It should be empha-
sized that there exist other, relatively more involved, accu-
rate algorithms for studying very long SAW chains, as for
instance the method by Berretti and Sokal [16] or the
pruned-enriched Rosenbluth method by Grassberger [17].
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FIG. 1. Illustration of the two-dimensional Sierpinski carpet
(also referred to as the Sierpinski square lattice) as obtained after
the second iteration. The sites with energy 0 and €>0 are shown as
white and black, respectively.
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Although these methods can in principle be implemented for
our present problem, we consider here the much simpler
(constant chain length) reptation approach, which we have
shown recently to allow quite accurate estimates for the char-
acteristic exponents describing the probability distribution
function (PDF) of the end-to-end distances of SAWSs on
Sierpinski carpets [9].

The paper is organized as follows: In Sec. II, we define
the model we are considering, the quantities of interest, and
their scaling functions. The results are discussed in Sec. III,
and the conclusions are summarized in Sec. I'V.

II. MODEL

We consider a SAW of a fixed number of steps N (i.e.,
N+1 monomers) in a two-dimensional lattice of linear size
L=3X%3%=2187, corresponding to a Sierpinski carpet of the
sixth generation (see Fig. 1 for a Sierpinski carpet of the
second generation) and apply periodic boundary conditions
to minimize boundary effects. The formerly allowed sites are
assigned an energy 0, whereas the formerly forbidden sites
are assigned an energy €>0. The size of the fractal is chosen
such that the largest SAW considered (N=399) fits com-
pletely into the central square of sites with energy €, even
when stretched to a straight line. It is clear that the limiting
cases T—0 and T— < correspond to the cases of SAWs on
Sierpinski carpets and on regular square lattices, respec-
tively.

We apply the reptation algorithm to generate SAW con-
figurations, which consists of two steps: (a) picking up at
random one of the two ends of the chain, and (b) choosing
one of its nearest-neighbor lattice sites at random as its pos-
sible new location. If the nearest-neighbor site is empty, the
energy difference AE between the attempted and current
chain configurations is calculated and the reptation step is
performed with probability min{l,exp(-AE/T)}, meaning
that the whole chain is moved along its track. Otherwise, or
if the nearest-neighbor site is occupied, the chain remains at
its actual position (in the special case where the occupied
nearest-neighbor site corresponds to the other end of the
chain, the site is considered empty since it becomes free once
the chain moves as a whole). In any case, the process is
repeated from step (a) all over again.

To characterize the spatial extension of SAWSs in the
square lattice, we consider the topological end-to-end dis-
tance € after N steps of the walk. The distance ¢ between two
points located at coordinates {x;,y,} and {x,,y,} is defined as

€=x; = x| + [y = yal. (1)

The present € metric is equivalent to the more standard Eu-
clidean or r metric [i.e., = /(x;—x,)?+(y; —y,)?], but has the
advantage that fluctuations are minimal, permitting a more
accurate determination of the characteristic exponents de-
fined below.

The end-to-end distance ¢(N,T) for a given temperature
T, averaged over all SAW configurations of N steps, denoted
as {(N,T), obeys the scaling relation [18]
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EN,T) ~N"D for N> 1, (2)

which defines the possibly temperature-dependent Flory ex-
ponent ¥(T). The probability distribution function for the
end-to-end distance for a given temperature T, P(€ |N ,T),
normalized according to [P(€|N,T )d€=1, obeys also a scal-
ing form given by

PUIN,T) = ZWi(T)IV(Z (1\(; T)’T)’ (3)

where the factor 27 comes from the angular integration and
F(x,T) is the temperature-dependent scaling function

L1(D+d(T) for x<1,

F(x,T) = (4)

8(D+d(T) exp[— b(T)x?D] for x> 1,
defining the possibly temperature-dependent characteristic
exponents g,(7), g,(T), and &T). The effective temperature-
dependent fractal dimension E(T) of the substrate, which en-
ters Eq. (4), is given by

In[8 + exp(— €/T)]

E(T) - In3

; (5)

which takes into account that, for finite temperature 7, the
sites with energy e>0 are accessed with a finite probability
exp(—e/T), so that, on average, the accessible area A(€,T)

within some distance ¢ increases as A(€,T) « ¢4 Note that,
for T—0 and T— o, the correct fractal dimensions d(T=0)
=In 8/In 3 (Sierpinski carpet) and d(T=2)=In9/In 3=2
(regular square lattice) are obtained.

II1. RESULTS

We simulate SAWs as described above for various chain
lengths N and temperatures 7, including the limiting cases
T—0 (corresponding to the Sierpinski carpet) and T— oo
(corresponding to the regular square lattice). We carefully
thermalize the SAW for the desired temperature by a large
number of preliminary reptation steps until the mean energy
of the chain has reached a plateau and fluctuates around it.
Only after that moment are data for the spatial configurations
of the chain taken. All resulting SAW configurations are
taken into account when performing the statistical average of
the end-to-end distance, including those for which no move
of the chain has taken place (see, for instance, [15]).

We first analyze the average end-to-end distance ¢(N,T)
of the SAWs for various chain lengths N and temperatures 7'
according to Eq. (2), yielding, as an average over chain
length N, the Flory exponent »(T) as a function of tempera-
ture 7. In Fig. 2, we show »(T) vs temperature T, where
v(T)=0.75 is found independent of T. This is consistent with
the expected values ¥(T—0)=0.75 [18] and ¥(T— )
=(.75 [8]. Hence, we assume a constant value of »(7) in the
following.

We proceed with the analysis of the distribution function
P(€|N,T) with the goal to determine the characteristic expo-
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FIG. 2. Plot of the Flory exponent 1(7) vs temperature 7. The
behavior is consistent with a temperature-independent value of
v(T)=0.75, shown as the horizontal line. The estimated values are
based on simulations for N=99, 299, and 399, with the error bars
indicating the estimated error. Already, for T=10, the behavior of
€(N,T) and hence the value of ¥(T) become indistinguishable from
that of the regular square lattice.

nents g;(7), g,(T), and &T) as a function of temperature 7.
In Fig. 3, we exemplify this analysis by showing the distri-
bution function for chain length N=99 and three tempera-
tures 7= (corresponding to the regular square lattice), e,
and 0 (corresponding to the Sierpinski carpet). The value of
the characteristic exponent g,(7) is determined from such
plots for various chain lengths N and temperatures 7 by fit-
ting the part €/N"7'<1 (the numerical values obtained so
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FIG. 3. Plot of the distribution function €P(€|N,T) vs €/N*D,
exemplified for N=99 and three values of temperature T: (a)
T=0o (regular square two-dimensional lattice), (b) €, and (c) O (Si-
erpinski carpet). The functional form obtained for £/N"" <1 [de-
termined by the characteristic exponent g,(7)] is shown as the full
line, whereas the functional form for €/ N7 > 1 [determined by the
exponents g,(7) and &(T), which are obtained by the ansatz shown
in Fig. 4] is displayed as dashed line.
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FIG. 4. Plot of the scaling function Y([b(T)]"9"¢/
N"D 1) =[b(1) 2D+ dDVAD B(T) -1 P(€|N, T )exp{-([b(T)]"*D
XL/N"DYADY v y=[b(T)]V9D ¢/ NYD, where B(T) and b(T) are
the constants in Egs. (3) and (4) being determined by the procedure
described in Ref. [19] (see main text), exemplified for N=99 and
three values of temperature T: (a) T=% (regular square lattice), (b)
€, and (c) O (Sierpinski carpet). According to the ansatz, Y(y,T) is
expected to scale as Y(y,T) OCng(T)*d(T) for a properly chosen value
of &T), with the fit shown as the full line. The fit is used
to obtain the value of g,(7), and the accuracy is assessed by
plotting  X([b(T)]"21¢/N"T) T)=—In{[b(T)]le2(D+dDYAD[ p(T) ]!
XLP(LIN,T)([b(T)]V0D ¢ NYD)=2D+DY -y x=[p(T) ]V De)
ND, which is expected to scale as X(x, T) ocx?D,

for different temperatures T are shown below). The charac-
teristic exponents g,(7) and &), showing up in the part
€/N"D>1, need to be determined in a more careful way.
Here, we exploit the normalization [P(¢|N,T )d€=1 and the
fact that the second moment [¢>P(€|N,T )d¢=N*"" to de-
termine the constants b(7T) and B(T) in Egs. (3) and (4), and
a scaling function Y(y,T) with y=[b(T)]"*D¢/N"D, which
is expected to scale as Y(y,T) « y22(D+4D for a properly cho-
sen value of &(T) (for details of this analysis see [19]). As an
example, we show in Fig. 4 the scaling ansatz for chain
length N=99 and the same three temperatures as in Fig. 3
[the numerical values of g,(7) and &(T) for different tem-
peratures T are shown below].

Using the analysis as exemplified in Figs. 3 and 4, we
determine the values for g,(7), g,(T), and &(T) for various
temperatures 7" as an average over chain length N. The nu-
merical results for g,(T) and g,(T) are shown in Fig. 5 and
display a nontrivial behavior between the known limiting
cases T—0 (corresponding to the Sierpinski carpet) and T
— oo (corresponding to the regular square lattice), indicated
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FIG. 5. Plot of the characteristic exponents (a) g,(7) and (b)
8-(T) vs temperature T. The known limiting cases 7— 0 (Sierpinski
carpet) and T— o (regular square lattice) are shown as dashed hori-
zontal lines. The estimated values are based on simulations for N
=99, 299, and 399, with the error bars indicating the estimated
error.

by dashed lines. Note, in particular, the different shapes, with
g1(T) decreasing significantly earlier as temperature T is in-
creased. This indicates that the probability of compact SAW
configurations [which is mainly determined by g,(7)] is
much more influenced by a finite temperature 7 than the
probability of SAW configurations of medium size [which is
mainly determined by g,(7)].

In Fig. 6, we display the numerically obtained values for
(7). It should be noted that the numerical values are below
the value expected from the Fisher relation &(7)=1/[1
—1(T)] [20], which gives &(T)=4 using v(T)=0.75, inde-
pendent of 7. They are, however, consistent with previous
simulations, for instance for Sierpinski carpets [8], which
found &(T=0)=3.73+0.30. Note that the apparent increase
of &(T) with T cannot be explained by the apparent decrease
of v(T) with T (cf. Fig. 2), as, according to the Fisher rela-
tion, a decreasing »(T) would result in a decreasing (7).
From our simulations, we conclude that &(T) is approxi-
mately independent of 7, which means that the probability of
elongated SAW configurations is not (or hardly) influenced
by a finite temperature 7.

A crucial issue is whether the observed behavior remains
valid in the limit of infinite chain lengths. Since we do nu-
merical simulations, it is never guaranteed that the results do
not change in this limit. This question can only be properly
addressed by analytical calculations, which, however, do not
seem feasible in this case (at least, no such result is known
for the Sierpinski carpet, which is in fact the motivation for
the present study). In this respect, we have carefully checked,
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FIG. 6. Plot of the characteristic exponent &(T) vs temperature
T. The expected value from the Fisher relation [20], &(7)=1/[1
—v(T)]=4, and the value §7T=0)=3.73, which has been found nu-
merically for Sierpinski carpets [8], are shown as full and dashed
horizontal lines, respectively. The estimated values are based on
simulations for N=99, 299, and 399, with the error bars indicating
the estimated error.

as shown above, that the results do not depend on chain
length in the regime of chain lengths that is accessible nu-
merically. Hence, we are confident that the present results
will remain valid in the limit of very long chain lengths.

IV. CONCLUSIONS

We study the temperature-dependent structural behavior
of self-avoiding walks (SAWs) in two-dimensional Sierpin-
ski carpets as a simple model of polymers adsorbed on a
disordered surface. The Sierpinski carpet defines two types
of sites, to which we assign energy 0 and €>0, yielding a
deterministic fractal energy landscape. We measure the aver-
age spatial extension of the SAWs in this energy landscape
for various chain lengths N and temperatures 7, and deter-
mine the characteristic exponents ¥(T), g,(T), g»(T), and
&(T) as functions of temperature 7. In the limiting cases of
temperature 7— 0 and 7T— o, the known behavior of SAWs
in Sierpinski carpets and in regular square lattices, respec-
tively, is recovered. For finite temperatures, the structural
behavior is found to be intermediate between the two limit-
ing cases, where the characteristic exponents g,(7) and g,(7)
characterizing the distribution function of the end-to-end dis-
tance, however, display a nontrivial dependence on tempera-
ture. Since g(T) decreases significantly earlier as tempera-
ture 7 is increased, the probability of compact SAW
configurations [which is mainly determined by g;(7)] is
much more influenced by a finite temperature 7' than the
probability of SAW configurations of medium size [which is
mainly determined by g,(7)].
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